

Current Sensor

Model Number:

HK3V 50 H20 HK3V 100 H20

For the electronic measurement of current:DC,AC,pulsed...,with galvanic insulation between the primary and the secondary circuit.

Features

- Open loop sensor using the Hall Effect
- ♦ Galvanic insulation between primary and secondary
- ♦ Insulating plastic case recognized according to UL 94-V0
- ♦ No insertion loss
- ♦ Double hall effect design
- ♦ Open mounting
- ♦ Standards:
 - IEC 60664-1:2020
 - IEC 61800-5-1:2022
 - IEC 62109-1:2010

Applications

- Battery monitoring motor
- ♦ Battery pack current detection
- ♦ Smart Power Grid

Safety

This sensor must be used according to IEC 61800-5-1.

This sensor must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the following manufacture's operating instructions.

Ôæč a‡} £Áã\Á; Á\/^&d &&æþÁ @&\Â

When operating the sensor, certain parts of the module can carry hazardous voltage (e.g., Primary busbar, power supply). Ignore this warning can lead to injury and/or cause serious damage.

This sensor is a built-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Absolute maximum ratings(not operating)

Parameter	Symbol	Unit	Value
Supply voltage	V c	V	15.75

- X Stresses above these ratings may cause permanent damage.
- * Exposure to absolute maximum ratings for extended periods may degrade reliability.

Environmental and mechanical characteristics

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Ambient operating temperature	V _A Á	$^{\circ}$	-25		85	
Ambient storge temperature	T s	$^{\circ}$	-40		85	
Mass	т	g		65		

Insulation coordination

Parameter	Symbol	Unit	Value	Comment
Rms voltage for AC insulation test@50Hz 1min	$V_{ m d}$	kV	2.5	According to IEC 60664-1
Plastic case	-	-	UL94-V0	

Electrical data

HK3V 50 H20

% With T_A = 25°C, V_C = ±12V unless otherwise noted.

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal rms current	I PN	Α		±50		
Primary measuring range	I _{PM}	Α	-100		100	
Supply voltage	V _C	V	±12		±15	@ ±5%
load resistance	R∟	kΩ	10			
Current consumption	<i>I</i> c	mA			20	
Output voltage	V out	V	-4		4	@ I _{PN}
Offset current	V OE	mV	-40		40	@ I _{PN} =0
Temperature drift of offset voltage	TCV _{OE}	mV/°C	-2		2	@-25~70°C
Hysteresis offset voltage	V _{OM}	mV	-40		40	@ I _{PN} =0
Theoretical sensitivity	G th	mV/A		80		
Sensitivity Temperature drift	TCG _{th}	%/°C	-0.1		0.1	@-25~70°C
Linearity error	£∟	%FS	-1		1	@±5%
Accuracy@ IPN	Х	%FS	-1	_	1	
Response time@ 90% of IPN	t r	us			100	-

3/5

Electrical data

HK3V 100 H20

※ With T_A = 25 °C, V_C = ±12V unless otherwise noted.

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal rms current	<i>I</i> _{PN}	Α		±100		
Primary measuring range	I _{PM}	Α	-200		200	
Supply voltage	V _C	V	±12		±15	@ ±5%
load resistance	R∟	kΩ	10			
Current consumption	<i>I</i> c	mA			20	
Output voltage	V _{OUT}	V	-4		4	@ I _{PN}
Offset current	Voe	mV	-40		40	@ I _{PN} =0
Temperature drift of offset voltage	TCV _{OE}	mV/°C	-2		2	@-25~70°C
Hysteresis offset voltage	V _{OM}	mV	-40		40	@ I _{PN} =0
Theoretical sensitivity	G _{th}	mV/A		40		
Sensitivity Temperature drift	TCG _{th}	%/°C	-0.1		0.1	@-25~70°C
Linearity error	\mathcal{E}_{L}	%FS	-1		1	@±5%
Accuracy@ IPN	Х	%FS	-1		1	
Response time@ 90% of IPN	t r	us			100	-

Dimensions (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

♦ General tolerance	±1mm
---------------------	------

Doc Ref.: 2801 000 00111

KF2EDGV-3.81-4P Connection of secondary

Remarks

- V_{OUT} and I_{P} are in the same direction, when I_{P} flows in the direction of arrow.
- Temperature of the primary conductor should not exceed 100℃.
- Dynamic performances (di/dt and response time)are best with a single bar completely filling the primary hole.

This is a standard model. For different applications (measurement, secondary connections...), please contact CHIPSENSE.